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We study the thermodynamic behavior of a ferromagnetic Ising system on a 
Bethe lattice in the presence of given boundary conditions. More specifically, we 
study the interface of the system when the spins on half of the surface are fixed 
opposite to the spins on the other half. We find an interface width that remains 
finite in the whole range (0, To), a feature due to the special topology of the 
Bethe lattice. We also study the case where the spin on a certain lattice site 
belonging to a domain is fixed in a direction opposite to the domain 
magnetization at all temperatures T< To. We obtain the influence of that spin 
on the local magnetization, and we find that the fixed spin nucleates a local 
domain that extends over a distance of only a few lattice sites from it at all tem- 
peratures T< T~. 
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1. I N T R O D U C T I O N  

The the rmodynamic  behavior  of a magnet ic  system under  given bounda ry  

condi t ions  has been studied for several years. Such behavior  has been 

investigated mainly  in the case of b o u n d a r y  condi t ions  that cause the 
appearance of two distinct magnet ic  phases meeting at a more or less well- 
defined interface/1 6~ 

The interface behavior  has been studied both for two-dimensional  and  

three-dimensional  magnet ic  lattices~ in the first ca.se basically using a 
var iat ion of the par t i t ion funct ion approach.  (2'3) The main  conclusion is 

that in the d =  2 case (d is the d imens ion)  the interface remains  diffuse at all 
temperatures  T below the critical T~, (l 3) while in the d =  3 case it becomes 

sharp at low temperatures  0 ~< T <  Tr, where Tr is the interface roughening  
temperature.  ~4,5) 
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In general, one can assume two types of boundary conditions: (1) a 
"surface" one, where the spins at the surface of the magnetic lattice are 
properly fixed, and one is interested in the bulk behavior of the two dif- 
ferent phases thus induced; (2) a "bulk" one, where a certain spin (or 
cluster of spins) in the bulk of the system is fixed in the presence of a 
uniform magnetic phase of opposite magnetization, and one is interested in 
the behavior of the magnetization around the fixed spin. 

The algebraic method used in the literature for treating the interface 
problem (2'3~ consists in calculating rigorously, for a given partition 
function, the "one-spin" correlation function, or magnetization, along a 
column of the lattice that divides the interface, using the transfer matrix 
approach and the matrix element techniques of Abraham/7~ On the other 
hand, the knowledge of the partition function is not necessary for the 
calculation of the thermodynamic behavior of an Ising system, according to 
a method proposed by Eggarter. (8) This method introduces neighboring 
spin pair probabilities, and is exact for a one-species Ising system on a 
Bethe lattice and equivalent to the Bethe Peierls approximation for real 
lattices. Assuming homogeneous behaviour throughout an infinite system, 
Eggarter effectively ignores the influence of any specific boundary con- 
dition, or rather he considers periodic boundary conditions. 

In the present paper we extend Eggarter's method to the case of an 
Ising system on a Bethe lattice in the presence of given boundary con- 
ditions of the "surface" or the "bulk" type mentioned above. One can 
introduce and calculate site-dependent spin pair probabilities and obtain in 
this way the thermodynamic behavior of such a system. Our method can 
easily include an external magnetic field as well and study its influence. 

We found that the special topology of the Bethe lattice in the case of 
"surface" boundary conditions, causing the appearance of two distinct 
phases, gives results that are qualitatively different from those in real lat- 
tices. The main interest of our treatment in this case lies in the fact that the 
method can be further extended (9) to include substitutional disorder, 
providing an insight into the influence of the disorder on the interface 
behavior. 

In the case of the "bulk" boundary condition our method gives results 
that should hold (within the general limitations of the Bethe-Peierls 
approach) for real lattices, too, because the Bethe lattice imitates quite 
accurately the local topology of a real !attice. 

In Section 2 we present the formalism leading to the behavior of the 
local magnetization throughout our system. We also present and discuss 
the results for the case of "surface" as well as "bulk" boundary conditions. 
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2. DEF IN IT ION OF THE M O D E L  A N D  RESULTS 

We consider a system of classical spins a~,= _1 with the related 
magnetic moments #z,= az,#0, localized on the sites {i} of a Bethe lattice, 
and having the usual Ising interactions: 

Jr~ - Z Jo.~r=,a< - #oH Z az, (1) 

where J(/=J>0 (ferromagnetic) for i , j  nearest neighbors but Ju=O 
otherwise, and z denotes the magnetic field direction. For simplicity, from 
now on we drop the index z from our notation. 

Our Bethe lattice consists of a Cayley tree, of coordination number Z, 
branching out of a central lattice site O in N homocentric layers of sites. 
The lattice terminates in an external boundary layer labeled N. Moving 
inwards, we label N -  1, N -  2 ..... 1 the successive layers of the lattice up to 
the layer 1 adjacent to the central site O. Each layer n contains 
N,, = Z ( Z -  1)" 1 lattice sites, and consequently the lattice as a whole con- 
tains a total of 

Z 1)N+ 1 
Ntot = 1 q- Z ~ -  2 [ ( Z -  - 1 l 

sites. 
We introduce the following layer-dependent spin pair probabilities 

P,+(G,, G,+ l) and P,7(G,, an ~), referring to neighboring sites on two 
single-site probabilities adjacent layers, and the corresponding 

P+(er,,+l/a,,), P,7(a,, jg,,), and Pn(a,,). 
The following relations hold: 

and 

P,+(a,,, g,,+ l)= P+(ry,,+l/a,,) P,,(rYn) (2) 

Pn (a,,,~ l )=P, ;  (a,, l/a,,)P,~(a,,) (3) 

P,+ (a,,, an+ l) = P,7+ l(a,,+ l, an) (4) 

p,,(a,,)= y~ P,,(a,,,an+~)= Y, P2_,(o-,, ,,a,,) (5) 
~Tn § 1 O-n I 

2 P,+(a-, a,,+ l) =1 (6) 

2.1. Fixed Spins on the Surface 

We introduce first the following "surface" boundary conditions: The 
spins on half of the layer N are fixed "up" (cL~= +1) and those on the 
other half are fixed "down" (a~ = -1  ) (see Fig. 1 ). 
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Fig. 1 Bethe lattice with coordination number Z= 4 and N homocentric layers branching 
out from a central lattice site O On the upper half-layer N we fix oN = +1 and on the lower 
half-layer N we fix aN= 1. 

Fol lowing Eggarter, we consider a spin a~ on layer n and its Z 

neighbors,  Z -  1 of which belong to the layer n + 1 and the other one to 

the layer n - 1  We express the probabi l i ty  of having a .  su r rounded  by 

v.+~ spins up and  /G+I down on layer n + l  ( v . + l + / ~ . + l = Z - 1 )  and 

v,,_ 1 up and/~,,  I down on layer n - 1 (v. 1 - t -  ~n I = 1 ) as 

P , , ( a . , v . + l , # . + l , v . _ l , ~ .  j) 

= P . ( a . ) P + ( l / a , , )  v"+l p+(.~/a.)~,,,+l p .  (T/a.)~. ,pff(]./a.)~,,,-~ (7) 

The change in energy when we flip spin a .  from "up" to "down" is 

A E = 2 1 ~ o H + 2 J [ ( V . + l - 1 4 , , + l ) + (  v. 1 - # .  1)] 
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and 

P,,($, vn+l, #.+1, Vn--1, # .... 1) 
Pn(,l, V n + l , # n + l , V n - - l , P n  i) 

= exp(2#oflH) exp{2fla[(v, +1 --#n+l)-~-( ' l "n 1--#,7--I)]}  (8) 

where fi = 1/kT. The relation is satisfied for all values v~+ 1, #n+ i, v,,_ l, 
and #,, l such that v,, + 1 + #,, + l + v,_ 1 + # ~ -  1 = Z.  

Relation (8) can give two independent equations. The first is obtained 
by giving any specific values to the (v, #). For example, for v~+l = Z - 1 ,  
G - i = l ,  a n d # n + ] = # . - ~ = 0 w e o b t a i n  

( P,+('I/"I)'I z-1P,+_,(T, "I)=exp(2fi#oH+ 2flZj) (9a) 
P?('~IJ.)) P,f_ ,('1", .1.) 

and f o r v n + l = 0 ,  v , , _ l = l , # , , + l = Z - l ,  a n d # , , _ l = 0  

( p+(,WT),]z 1p+ l('r, T)=exp[2fl l loH+2fi(2_Z)j  ] (9b) 

The second relation is obtained when (9a) or (9b) is divided by the 
equation that is derived from (8) when v;,+l = v n + ~ - l ,  #'~+~ = # ~ + ~ +  I, 
v,, ~= l ,  a n d # n _ / = 0 :  

P+(T, T) P+(~, ~.) = ea~J (9c) 
P,+ (l, T) P+(]', +) 

We observe that the set of relations (5), (6), and (8), because 
of relations (2)-(4), contains the unknown spin-pair probabilities 
P,+,(an, ~,+1), P,+,- ~(~,,-1, a,,), a =  _+1, i.e., four on each layer. These can 
be calculated only after the boundary conditions of the system have been 
specified and will be different at different parts of the same layer, depending 
on the corresponding boundary conditions. Therefore, in the present case 
the probabilities will be the same on half of each layer, but different from 
those on the other half, as the assumed boundary conditions require. To 
obtain such a solution, one has in principle to calculate 8N pair 
probabTlities P+(a,  ~r'), 4N for every half layer, that are properly matched 
at the central lattice O, a lengthy but straightforward process. We note, 
nevertheless, that for the present study of the interface structure a simpler 
calculational approach can be used. 
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The boundary conditions on the layer N can be expressed as follows: 

P~ -  ,(Y/?) = P~-1(~/~) = 1 
(10a) 

P•-1(1, ,[,) = P+ l(~,, ~,)~--0 

in terms of spin pair probabilities, for the "spin-up" half of the layer. Also, 

P~_,(,L/T)=P~v , ( $ / ; ) =  1 
(10b) 

P~_~(] ' ,T)=P+ ,(~,~')=0 

for the "spin-down" half of the layer. 
These boundary conditions permit the calculation of the quantity 

X.-P,+,(T,~)/P~+(?,~.) ,  ne [ O , N - 1 ]  ( l l )  

throughout the lattice, by using the following recurrence relations: 

( <+1 V-' 
X~_ 1 = \ - -~ , ; e~a j }  exp (2 f iZJ+ 2fi/~0 H) (12a) 

for the "spin-up" part of the layer, and 

( <+l )z_l 
X;- I  = \X~e---:~) ~ - 1 exp[2fi(2 - Z ) J +  2fl#oH] (12b) 

for the "spin-down" part. 
The recurrence relations follow from (9a) and (9b) by using (2), (5), (9c), 
and (11). 

We observe that at zero magnetic field ( H = 0 )  relations (12a) and 
(12b) coincide. 

Starting from the surface and using the boundary conditions (10a) and 
(10b), we obtain the X N 2 

XTN- 2 = exp( 2fl Z J  + 2fi# o H) (13a) 

X~N 2 = exp[2fl(2 - Z ) J +  2fl#0H ] (13b) 

from Eqs. (9a) and (9b) for n = N -  1, while the same boundary conditions 
imply 

X~_l  = 0% X~ 1 = 0  

from the definition (11) of X,. 
The behavior of the iteration scheme for the X, [Eqs. (12a) and 

(12b)], starting from n = N - 2 ,  is shown in Fig. 2 for the case Z = 4 and 
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Fig. 2. Iteration scheme for the successive values of X n, n : N -  2, N -  3,..., for Z = 4, H -  0, 
and kT/J:  2.6. For any given value of X n on the X, axis, the continuous curve determines the 
subsequent value X, +1 and the iteration scheme progresses as indicated by the dashed lines, 
converging to either one of the fixed points Ri, i= 1 or 2, depending on the starting point 
(phase 1 or phase 2). 

H = 0 .  The iteration has two at tract ing points given by two appropr ia te  
roots R 1 and R2 of the fourth degree (in this case) algebraic equat ion 
obtained from (12a) or (12b) when we put  Xn I=X,=R in it. The tem- 
perature dependence of R 1 and R 2 is shown in Fig. 3. At kT/J = 2.8854 the 
two roots  coincide and we identify this temperature as the critical tem- 
perature T C. 

The iteration scheme converges to R1 or R2, depending on the boun-  
dary value X~_ 2 or X+N_2, respectively, and R1 and R2 give the bulk (far 
from the surface) behavior  of  the corresponding "spin-up" (1) "spin-down" 
(2) phase. F r o m  RI and R2 one can thus calculate the "bulk" spin pair 
probabilities P~n(cr, a ' )  by put t ing PT2(T, $ ) =  Pl,~(~, T) and using (9c) and 
the normal izat ion condi t ion (6), provided that the system is large enough 
to consider the bulk region as far f rom either the surface or  the interface 
region, In this case our  solutions coincide with Eggarter 's.  (8) 

822/45/3 4-t2 
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Fig. 3. Temperature dependence of the fixed points R 1 and R 2 of the iteration scheme [Eqs. 
(12a) and (12b)]. R 1 and R 2 coincide at the critical temperature kTjJ= 2.8854. 

The magnetization of the system at any layer n is given by 

m,, =/~o[P,,(]') - Pn(~)] = #o[1 - 2Pn(~)] (14) 

and away from either the surface or the center of the lattice, is given as 

m~ = Uo[P~(~ ' ) -  P~(+) ]  > 0  
(15) 

m~ = #o [Py ( ] ' ) - -  P~(+) ]  < 0  

The two halves of the system that contain phases 1 and 2 correspondingly 
meet at the central site O, and by symmetry of the construction of the lat- 
tice the magnetization should be zero there, mo = 0. This condition permits 
the calculation of the magnetization of each phase away from the central 
site O, according to the following iteration scheme: 

Using (5), (9c), and (11), we have 

P.(T) = P+ (T+)(1 + x . )  

Pn(l) = n.+ (i~)(1 + X.e-~) 
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and therefore 

1 - P n ( , L )  P~(+) 
P,+I(.~) 1 + X .  {- 1 + X , e  -4~J (16) 

Combining (16) and (14), we obtain for the magnetization the following 
recurrence relation: 

i X- n - -  1 m n - -  m,+~ - - +  1-- (17) 
Jl 0 X n 4" 1 X n 4- 1 X n 4- e 4flJ 

where i = 1 or 2 corresponding to the two phases. This relation determines 
the magnetization behavior near the surface as well as in the interface or 
bulk region. 

Working in the interface region first, we observe that in the bulk of the 
lattice, X, converges to Ri. Since mo = 0 at the central site, as discussed 
above, we can obtain the behavior of the magnetization away from the cen- 
tral site O, by substituting X,,=Ri and m o = 0  in Eq. (17) (where i =  1, 2) 
and iterating relation (17). 

Figure 4 shows the behavior of m,, around the central site for three dif- 
ferent temperatures. The magnetization changes appreciably over distances 

m n  

P h a s e  1 P h a s e  2 

"= 

, j  I \ 
�9 - U  �9 I " . .  ~. k--T-T =2.8853 

J\& "L''~R-- --i---=----=--4 
~ kT =2.B8 

3 'k 
"" kT-2 8 ""--.J_--_-,_: ...... 

I I i t t L l l I [ 

rl 

Fig. 4. Magnetization (m,,) behavior on successive layers n = 1, 2, 3,... away from the central 
site O, where the two phases 1 ("up") and 2 ("down") meet, for the three different tem- 
peratures indicated. 
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of only a few lattice sites, approaching the corresponding value m~ 
( i= 1, 2) asymptotically, and therefore the interface region remains sharp 
(nondiffuse) at all T <  T~. Introducing W= ( m ~ - m l ) / m l  as a measure of 
the interface width, we find that with increasing temperature in the range 
(0, To), W remains almost zero at low T and then, increasing slowly for T 
around T J2, W passes to a relatively fast linear increase with T 
approaching To, in qualitative similarity with the cubic lattice case, (s) 
where the interface becomes diffuse for T > T~ = Tel2. 

For the magnetization near the surface of either of the two phases, on 
the other hand, we cannot proceed by iterating Eq. (17) because (1) 
starting from the surface where mN~-I-110 , w e  canot use Eq. (17) for 
mN-1, since XN_ ~ is zero or infinity, as discussed above, and (2) starting 
from the bulk where m , = m p  and X,=R~, we cannot iterate (12a) or 
(12b) toward the surface, since R~ is a fixed point of the iteration. Instead, 
we develop the following scheme starting from the observation that, 
according to Eq. (17), m.+ t  will be larger than m~ only if m, < m~, where 
m~ is the root of Eq. (17), i.e., the value of m~ that gives m,+~-=m~, 
because [see Eq. (17)] 

e 4~J- 1 Xn 
m~+~=rn~+c~(m,,+m~), Cn=ea~J+XnXn+l, 0~<cn<l  (18) 

Therefore, the value of m s _  1 that will produce a sequence of m,, 
(n = N - 2 ,  N-3 , . . . )  that decreases monotonically away from the surface, 
converging to m• ( i=  1 or 2), should be 

m N ~=mON_2--CN 2 A M P 2  

- - c  N 2CN 3 A m P N _ 3 - - C N  2 s  3CN 4Am%_ 4 . . . .  {19) 

where Amp= " o m n - -  m n !.  

The series converges uniformly in the limit N--* oo, being bounded by 
a geometric series, because cn > c,_ 1, V,,, implying 

k 

i - - 2  

and Am~ ~ 0 as we move away from the surface, since Xn ~ Ri there. The 
convergence is so fast for all finite T that we get adequate accuracy when 
we keep only the first two terms of the series expansion for m~, Eq. (19). 
Figure 5 shows the behavior of m n away from the surface in phase 1, at 
kT/J = 2.6. The phase 2 case is symmetrically opposite to phase 1. 
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Fig. 5. Magnetizat ion (m,)  behavior  on successive layers n = N -  1, N -  2,... away from the 
surface layer N, where we fix mN = +#0,  for kT/J= 2.6. The rnN = -/10 case is symmetrically 
opposite. 

2.2. Fixed Spin in the Bulk 

We consider now the case where a spin at a certain site in the bulk of 
the system is fixed "down" while the system is kept at a uniform phase "up" 
by properly adjusting the boundary conditions at infinity. For  simplicity we 
take site O as hosting the fixed spin and thus we have m o = -#0 .  

According to the analysis presented in Section 2.1, the behavior of the 
magnetization ran, n = 1, 2, 3,..., around the fixed spin can be obtained 
iteratively from (17) by putting Xn = R1 (since we are in the bulk of a phase 
"up") and starting with rn o = -kto. 

Figure 6 shows such behavior of rnn for several successive layers 
around O and for three different T. 

2.3. Concluding Remarks 

The influence of specific boundary conditions on the thermodynamic 
behavior of an Ising system has been treated explicitly, and is the main 
feature of the present work. 

In the present study we derive the thermodynamic behavior in all 
parts of the system and especially in the vicinity of the fixed spins, as well 
as in the interface region. Although our results have a general validity 
corresponding only to the Bethe-Peierls approximation for real lattices, 
some interesting features are brought about in two respects. 

First, as mentioned above, is the behavior of the system in the vicinity 
of the bounds, a characteristic that is apparently retained in the finite 
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Fig. 6. Magnetizat ion (rn,) behavior on successive layers n = l, 2, 3,... away from a site O 
with a fixed spin a0 = - 1 ,  in the bulk of an "up" phase, for the three different temperatures 
indicated. 

system, and may be of central importance there. Our analysis not only 
holds for a finite system, but also shows how the behavior of successively 
larger systems evolves toward the thermodynamic limit. 

A second feature of our analysis is the possibility of its extention (9) to 
incorporate substitutional disorder, and thus study its influence on the 
interface region. One thus can reveal qualitative characteristics of such 
influence that also should be present in real lattices. 

In closing, we believe that this last feature opens a way for studying in 
a more quantitative fashion the role of a factor of importance in many 
cases (alloys, etc.). 
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